

Biological Treatment of Tannery Wastewater by Using Salt Tolerant Bacteria

Presented by: Nurymkhan MARJANGUL

Supervisor: Zhenya ZHANG

Introduction to tannery waste water

Waste water problem in Mongolia

Materials and methods

Results and discussion

Introduction to tannery waste water

Biochemical Oxygen Demand

Chemical Oxygen Demand

SS

Total Dissolved Solids

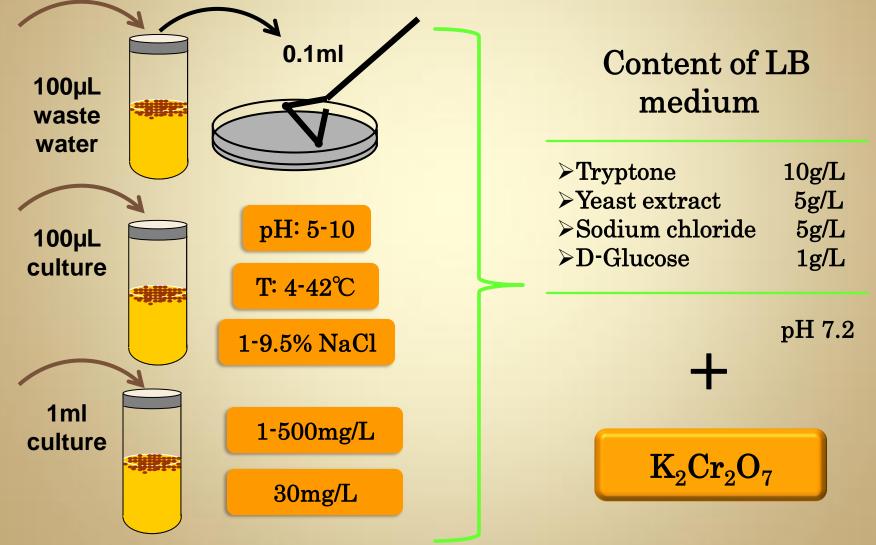
Suspended Solids

Chromium and sulphides pH 5-10

Waste water problem in Mongolia

All of tannery industries are located near the Tuul River, which mainly contributes to the pollution status of the river. In Mongolia, all of the tanneries don't have their own treatment plant. The Khargia Company is the only one private company to treat wastewater from tanneries.

Significantly


Treatment is necessary due to the wide range of toxic chemicals in untreated tannery and their effects on the environment.

My propose

 Isolation indigenous bacterial strain having detoxification activity
Lab scale degradation hexavalent chromium into its trivalent form.

Materials and methods

□ Isolation of bacteria and optimum growth condition

Materials and methods

Phylogenetic analysis of bacteria and identification

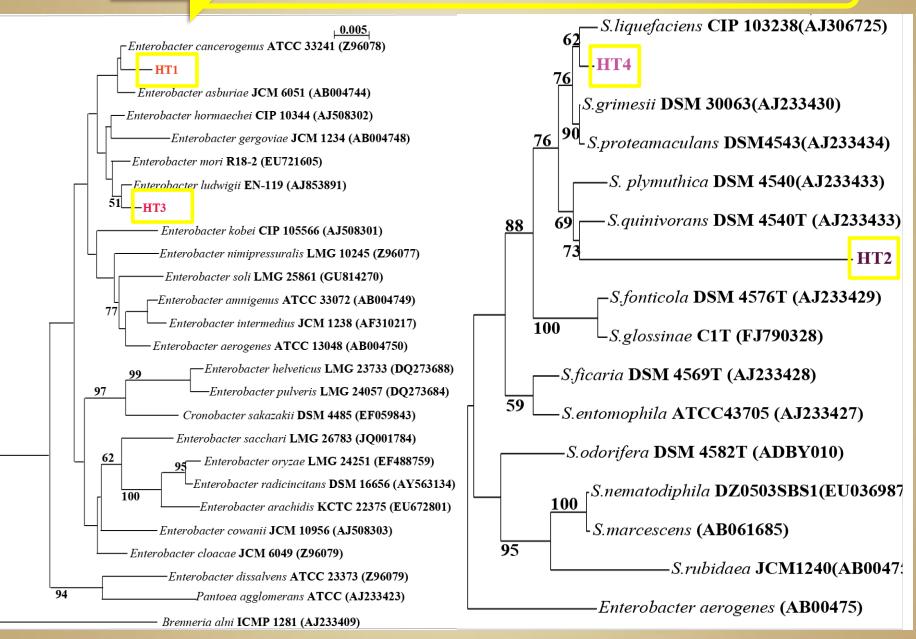
16S rRNA sequence data

>HT1

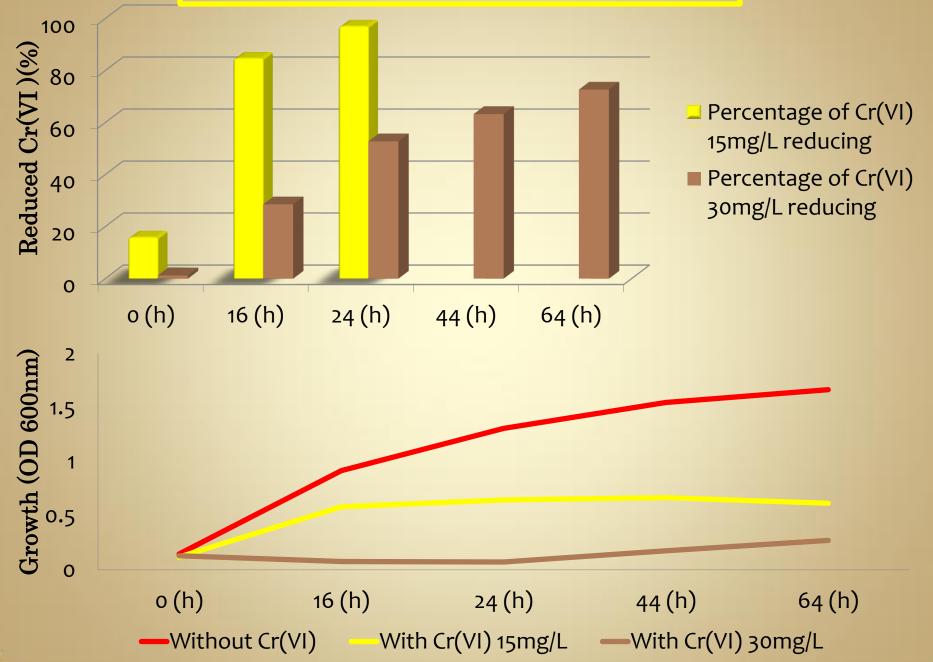
ATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGAGCGG CAGCAGCTCTTCGGGAGGCTGGCGAGCGGGGGACGGGGGAA AACCCGGATTAATACCGCATACGCCCTGAGGGGGAAAGCCGGG CTCCGGCTCGCGCTATTGGATGGGCCCATGTCGGATTAGTTA GTTGGTGGGGGTAATGGCCTACCAAGGCGACGATCCGTAGCTG GTCTGAGAGGGATGATCAGCCACACCGGGACTGAGACACGGCC CGGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATG GGGGCAACCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGC CTTAGGGTTGTAAAGCACTTTCAGCAGGGAGGAAAAGCTGAT CGTTAATACCGGTCAGTGTTGACGTTACCTGCAGAAGAAGCA CCGGCTAACTCCGTGCCAGCAGCGCGCGTAATACGGAAGAAGCA CCGGCTAACTCCGTGCCAGCAGCGCGCGTAATACCGGAGGTG CAAGCGTTAATCGGAATTACTGGGCCGTAAAGGGCGCGTAGGC GGTTTGGTAAGCGAGTTGTGAAAGCCCCGGGCTCAACCTGGG AATGGCAATTCGAACTGCCAAGCTAGAATGCAGCAG......

BLAST search

http://www.ddbj.nig.ac.jp http://www.ncbi.nlm.nih.gov http://www.eztaxon.org Constructing phylogenetic tree & identification of bacterial strains using software ≻Clustal W1.83 XP ≻NJPlot.exe


Isolation of bacteria and optimum growth condition

Characteristic	Strain numbers			
	HT1	HT2	HT3	HT4
Morphological characteristic				
Colony morphology	Circular	Circular	Circular	Circular
Colony size	3mm	2mm	3mm	3mm
Colony elevation	Even	Even	Even	Even
Physiological characteristic				
pH range	4-11	4-11	4-9	4-10
NaCl range (% w/v)	5-9.5	5-7	5-9.5	5-9.5
Temperature range (T ⁰)	4-45	15-45	4-45	15-45



Phylogenetic analysis of isolates

Cr (VI) reduction by HT1

Conclusion

Chromium resistant bacteria have been isolated from tannery effluents , Mongolia

All of strains are salt tolerant and two strain belonged to the genus *Enterobacter* and two strains belonged to the genus *Serratia*

The results indicate that indigenous bacterial strains are able to reduce hexavalent chromium and these bacterial strains can be exploited for lab-scale degradation of the tannery waste waters.

Thank you

.